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Research

Development of accurate and predictive 
in vitro toxicity testing methods that could 
be used as alternatives for lengthy and costly 
in vivo experiments has long been an elusive 
goal for both industry and regulatory agencies 
(National Research Council 2007). New, bold 
research programs were recently established at 
the National Toxicology Program (Xia et al. 
2008) and the U.S. Environmental Protection 
Agency (U.S. EPA) (Dix et al. 2007) and 
coordinated at the interagency level by the 
U.S. government (Collins et  al. 2008) to 
address this important challenge in a system-
atic way. The overall goal of these initiatives 
is to explore a diverse array of in vitro toxicity 
assays, such as cell-based and cell-free high-
throughput screening (HTS) techniques, as 
well as toxicogenomic technologies, to evaluate 
the toxic potential of chemicals and prioritize 
candidates for animal testing. However, the 
utility of in vitro data as indicators of in vivo 
effects will be fully realized only if rigorous 
correlation between the toxicity of chemi-
cals in vitro and in vivo can be established 

(National Research Council 2007; Rabinowitz 
et al. 2008).

Many previous studies have indicated that 
the correlation between the in vitro toxicity 
results and animal toxicity test data (e.g., acute, 
subacute, subchronic, and chronic rodent tox-
icity test results) is generally poor. Most nota-
bly, in 2001, the Interagency Coordinating 
Committee on the Validation of Alternative 
Methods (ICCVAM) hosted a workshop to 
assess the relationship between cytotoxicity 
and rodent acute toxicity for > 300 diverse 
compounds; the data were compiled by the 
Zentralstelle zur Erfassung und Bewertung 
von Ersatz-und Ergaenzungsmethoden zum 
Tierversuch (ZEBET; the National Center for 
Documentation and Evaluation of Alternative 
Methods to Animal Experiments) [ICCVAM 
and National Toxicology Program Interagency 
Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM) 2001]. 
It was concluded that there is no clear cor-
relation between cytotoxicity [half-maximal 
inhibitory concentration (IC50)] and acute 

toxicity [median lethal dose (LD50)] data in 
rodents. Similarly, poor correlation was found 
between in  vitro cytotoxicity and in  vivo 
rodent carcinogenicity, even when a diverse 
set of in vitro end points from HTS was used 
(Xia et al. 2008; Zhu et al. 2008).

Cheminformatics approaches such as quan-
titative structure–activity relationship (QSAR) 
modeling have been widely used in toxicology 
(Dearden 2003; Johnson et al. 2004). Several 
software packages, such as Toxicity Prediction 
by Komputer Assisted Technology (TOPKAT) 
(Venkatapathy et  al. 2004) and Multiple 
Computer-Automated Structure Evaluation 
(MultiCASE) (Matthews et al. 2006), have 
been developed and actively used by both 
industry and regulatory agencies. However, 
existing modeling tools generally do not achieve 
good external accuracy of prediction for com-
pounds not used in model development, and 
few QSAR models have been successful in pre-
dicting in vivo toxicity end points for diverse 
sets of environmental compounds (Benigni 
et al. 2007; Stouch et al. 2003).
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Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. 
Large public–private consortia have been formed with the goal of improving chemical safety assess-
ment by the means of high-throughput screening. 

Objective: A wealth of available biological data requires new computational approaches to link 
chemical structure, in vitro data, and potential adverse health effects. 

Methods and results: A database containing experimental cytotoxicity values for in vitro half-
maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more 
than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und 
Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and 
Evaluation of Alternative Methods to Animal Experiments). The application of conventional 
quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat 
acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically signifi-
cant models. The analysis of these data showed no significant correlation between IC50 and LD50. 
However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. 
To capitalize on this observation, we developed a novel two-step modeling approach as follows. 
First, all chemicals are partitioned into two groups based on the relationship between IC50 and 
LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and 
another group comprises the remaining compounds. Second, we built conventional binary clas-
sification QSAR models to predict the group affiliation based on chemical descriptors only. Third, 
we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values 
from chemical descriptors. All models were extensively validated using special protocols. 

Conclusions: The novelty of this modeling approach is that it uses the relationships between in vivo 
and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. 
Models resulting from this approach employ chemical descriptors only for external prediction of 
acute rodent toxicity.
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There are several possible reasons that previ-
ous attempts to establish relationships between 
in vitro and in vivo toxicity data were largely 
ineffective. These include, among other fac-
tors, inadequate attention paid to the chemical 
diversity of the compounds used for screening 
and modeling and, consequently, unjustified 
confidence in the ability of models to extrapo-
late significantly outside the chemistry space 
of the training set. Furthermore, the conven-
tional QSAR modeling efforts have been dis-
connected from the growing efforts to employ 
in vitro screening (i.e., HTS data) to predict 
in vivo outcomes. Recently, we have proposed 
the use of hybrid chemical–biological descrip-
tors, that is, a combination of conventional 
chemical descriptors with HTS profile data 
regarded as biological descriptors. We have 
demonstrated that these hybrid descriptors 
afford QSAR models with significantly higher 
accuracy of prediction of rodent carcino
genicity versus models using chemical descrip-
tors alone, and much higher accuracy versus 
models that used biological in vitro data alone 
(Zhu et al. 2008).

These recent studies suggest that the 
explicit consideration of chemical structure (in 
the form of chemical descriptors) along with 
in vitro assay data could potentially account 
for discrepancies between in vitro and in vivo 
results and produce more accurate predictive 
models of in vivo toxicity. To validate this 
hypothesis further, in this study we used the 
ZEBET data set (ICCVAM and NICEATM 
2001) for which previous attempts to establish 
the direct in vitro/in vivo correlation proved 
largely unsuccessful (Freidig et al. 2007). We 
have observed that chemicals can be partitioned 
into two classes based on comparison between 
cytotoxicity and acute toxicity data: a) those for 
which the linear in vitro (IC50)/in vivo (LD50) 
correlation could be demonstrated and b) those 
that correlate poorly. Furthermore, and of cen-
tral importance for applying our models to the 
external set of chemicals for which no in vitro 
data exist, we have built binary QSAR models 
that could discriminate between compounds in 
these two classes with reasonable accuracy based 
on their chemical features alone. Finally, we 
have established rigorous and externally predic-
tive class-specific QSAR models of rodent acute 
toxicity measured by LD50 values. We show 
that a two-step hierarchical QSAR modeling 
work flow where compounds are first assigned 
to a class using binary QSAR models and 
then their LD50 values is predicted using class- 
specific continuous QSAR models affords accu-
rate prediction of LD50 values for compounds 
not included in the training set. In addition, we 
show that this two-step model’s statistical pre-
diction accuracy compares favorably with cur-
rently available commercial toxicity predictors. 
Our studies suggest that the two-step QSAR 
modeling work flow can improve performance 

of predictive acute toxicity models for diverse 
organic compounds and aid in prioritizing 
compounds for rodent toxicity testing.

Materials and Methods
Data sets. The ZEBET database consists of 
data for 361 chemicals compiled from litera-
ture studies and published in a consolidated 
ICCVAM report (ICCVAM and NICEATM 
2001). Every compound in this data set has 
at least one cytotoxicity result (IC50) and at 
least one type of rodent acute toxicity value 
(rat or mouse LD50). We defined ZEBET 
criteria to select cytotoxicity data for this data 
set as follows: a) at least two different IC50 
values were available, either from different 
cell types or from different cytotoxicity end 
points; b)  cytotoxicity data were obtained 
with mammalian cells; c) cytotoxicity data 
obtained with hepatocytes were not accept-
able; and d)  chemical exposure time in 
the cytotoxicity tests was at least 16 hr. 
Furthermore, only the results obtained from 
the following cytotoxicity tests were accepted: 
a) cell proliferation measured by cell num-
ber, protein, DNA content, DNA synthe-
sis, or colony formation; b) cell viability and 
metabolic indicators, including metabolic 
inhibition test (MIT-24), 3-(4,5-dimethyl
thiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay, 3-(4,5-dimethyl
thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium (MTS) assay, 
and sodium 3,3-(1-[(phenylamino)carbonyl]-
3,4-tetrazolium)-bis(4-emthoxy-6-nitro)ben-
zene sulfonic acid hydrate (XTTC); c) cell 
viability and membrane indicators, including 
neutral red uptake, trypan blue exclusion, cell 
attachment, and cell detachment; and d) dif-
ferentiation indicators.

For the purpose of this work, we 
curated the data set to select the subset of 
organic compounds and excluded inorganic 
and organometallic compounds, as well as 
compound mixtures, because conventional 
chemical descriptors used in QSAR studies 
could not be computed in these cases. There 
were 254 and 235 compounds that had rat 
or mouse LD50 (millimole/kilogram-body 
weight/day) values, respectively. Only LD50 
values published in the Registry of Toxic 
Effects of Chemical Substances (RTECS) 
(Norager et al. 1978; Ruden and Hansson 
2003) were used. The distributions of log(1/
LD50) values of ZEBET compounds, with 
the exception of a single outlier, were from 
–2.61 to 2.30 for the rat and from –2.50 to 
2.19 for the mouse. We considered one com-
pound, 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(CAS 1746-01-6), an activity outlier because 
its log(1/LD50) value was –4.21 for the rat, 
which deviated significantly from the activ-
ity range of the data set. After excluding this 
single outlier, the data sets used for modeling 

consisted of 253 compounds for the rat and 
235 compounds for the mouse. An additional 
set of 115 compounds with complete data 
(both LD50 and IC50) for the rat was recently 
released by ICCVAM, which we used for vali-
dation (referred to as the ICCVAM data set). 
[For raw data, see Supplemental Material, 
Table 1 (doi:10.1289/ehp.0800471.S1).]

The data on rat chronic lowest observed 
adverse effect levels (LOAELs) and rat chronic 
no observed adverse effect levels (NOAELs) 
were compiled from an internal low-dose 
toxicity data set established in our labora-
tory [see Supplemental Material, Table 2 
(doi:10.1289/ehp.0800471.S1)]. These data 
include a combination of multiple toxicity 
phenotypes, such as liver toxicity and kidney 
toxicity. Compared with the ZEBET data set, 
42 unique compounds have both rat LOAEL 
and in vitro IC50 values, and 41 compounds 
have both NOAEL and in vitro IC50 values. 
Because of limited availability of LOAEL and 
NOAEL data, we used these two data sets 
only to illustrate the data partitioning algo-
rithm and did not build any QSAR models 
for them.

QSAR modeling approaches. We used 
the k-nearest neighbor (kNN) QSAR model-
ing approach that has been developed in our 
group (Zheng and Tropsha 2000). In brief, 
the method is based on the kNN principle and 
the variable selection procedure. It employs 
the leave-one-out cross-validation procedure 
(LOO-CV) and a simulated-annealing algo-
rithm for the variable selection. The proce-
dure starts with the random selection of a 
predefined number of descriptors from all 
descriptors. If kNN > 1, the estimated activi-
ties ŷ i of compounds excluded by the LOO 
procedure are calculated using the following 
formula:
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where yj is the activity of the jth compound. 
We define weights wij as
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where dij is the Euclidean distance between 
compound i and its jth nearest neighbor. 
Further details of the algorithms and work 
flow are provided elsewhere (Medina-Franco 
et al. 2005; Ng et al. 2004; Shen et al. 2002; 
Zheng and Tropsha 2000).

We developed rat and mouse LD50 
QSAR models for ZEBET compounds using 
DRAGON chemical descriptors (DRAGON 
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for Windows, version 5.4; Teleste s.r.l., 
Milan, Italy). Before model construction, 
23 compounds with rat LD50 results and 24 
compounds with mouse LD50 results were 
selected at random to serve as external vali-
dation sets. The remaining 230 rat and 211 
mouse compounds were used as modeling 
sets, and each was divided multiple times 
into training/test sets using the sphere exclu-
sion approach (Golbraikh et al. 2003). We 
characterized the statistical significance of the 
models with the standard LOO-CV R2 (q2) 
for the training sets and the conventional R2 
for the test sets when modeling real values 
(i.e., continuous QSAR). For classification 
modeling, we used correct classification rates 
expressed as a fractional value between 0 and 
1. The model acceptability cutoff values of 
the LOO-CV accuracy of the training sets 
and the prediction accuracy for test sets were 
both set to 0.65 for classification models. For 
continuous models, the acceptability thresh-
olds for LOO-CV regression q2 for the train-
ing sets and R2 values for the test set were 
both set at 0.5. Models that did not meet 
both training and test set cutoff criteria were 
discarded.

Moving M-regression for data partitioning. 
We used a novel approach related to a class 
of M-regression methods (Andersen 2007), 
which we termed “moving M-regression,” to 
select compounds for which there is a strong 
correlation between IC50 and LD50 values 
(class 1). The approach is a variant of the least 
squares regression that takes into account 
only those data points contained within a 
band around the regression line yregr = ax 
+ b. For each y, only the points within the 
interval [y – di, y + di] are candidates for class 
1, whereas points outside of this band are 
excluded from class 1. If the line y = ax + b 
is moved, some new points will enter the 
band, whereas some other points will leave 
it, which may result in a higher regression R2; 
this also explains why we use the term “mov-
ing M-regression.” For each point, we define 
{xi, yi}, i = 1, . . . , n, the moving M-regression 
inclusion function, as
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Thus, the moving M-regression line can be 
found by minimizing the following expression:
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Function F is not differentiable at all points 
(xi, yi) such that yi = axi + b – d1 and yi = axi + 
b + d2. For practical purposes, we approximate 
η(xi, yi) by sums of two sigmoid functions:
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where P1 and P2 are large (~ 100) positive 
parameters. Indeed, as P1 and P2 approach 
infinity, the expression on the right side 
of Equation 5 approaches the right side of 
Equation 3. Small approximation errors in 
the vicinity of points {axi + b – d1, yi} and {axi 
+ b + d2, yi} approach zero as both P1 and P2 
approach infinity. It is as if the data points are 
gradually included within, or excluded from, 
the band when the regression line is mov-
ing. Finally, replacing η(xi, yi) by Equation 3, 
we obtain
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To optimize F(a, b), the following system 
of equations is to be solved:
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Equations 7 are nonlinear, so depending 
on the data set and parameters P1, P2, d1, and 
d2, they can have multiple solutions (a, b).

In these studies, xi and yi were the in vitro 
log(1/IC50) and in vivo log(1/LD50) values, 
respectively, for a data set of compounds 
under study. Instead of using Equation 6, 

we determined the compounds that belong 
to class 1 by maximizing the number of data 
points within the band. With this correction, 
our target function takes the form
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To obtain the baseline toxicity regression 
(see Results), we opted to minimize the num-
ber of outliers below the regression line. For 
this purpose, we added additional terms for 
the lower border of the band weighted by an 
arbitrary parameter α. Thus, we minimized 
the following target function:
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The initial point (a, b) for minimization 
of F** was selected manually. P1 and P2 were 
equal to 100, d1 and d2 were equal to 0.4, 
and α was equal to 1. To optimize Equation 
9, the system of Equations 7 in which F is 
replaced by F** should be solved. Figure 1 
summarizes the data analytical work flow that 
we employed in this study for rodent acute 
toxicity modeling.

Model validation. We validated training 
set models by evaluating their external predic-
tive power on the test sets as described above. 

Figure 1. The work flow of the two-step kNN QSAR LD50 modeling.
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Furthermore, a 5-fold external CV analysis 
was performed for the original ZEBET data 
set: the data set was randomly split into five 
equal-size subsets of compounds and five 
independent sets of calculations were con-
ducted each time using 80% of the whole data 
set as a modeling set and the remaining 20% 
compounds as a test set. In addition, robust-
ness of QSAR models was verified using a 
Y-randomization (randomization of response) 
approach as follows. We randomly divided 
the modeling set compounds into class 1 and 
class 2 subsets and developed kNN QSAR 
LD50 models for each subset using the same 
protocol and the same cutoff criteria (q2 and 
R2 > 0.5) as for compounds in classes 1 and 
2 that we generated by means of the moving 
regression. The purpose of this was to see if 
statistically significant QSAR models could 
be obtained for any random division of the 
original data into two classes. Independently, 
we applied the test to compounds in unique 
classes 1 and class 2 by randomizing their 
LD50 values and redeveloping training set 
models. Both Y-randomization tests were 
repeated 10 times.

Results
Failure of conventional QSAR modeling of 
rodent acute toxicity. The modeling set includ-
ing 230 compounds with known rat LD50 
data was partitioned into 32 training and test 
sets and the conventional kNN QSAR model-
ing approach was applied to all training sets 
as detailed in “Materials and Methods.” We 
characterized each training set model by its 
q2 value; for the five best training set models, 
these values ranged between 0.5 and 0.57. 
These five models were used for predicting 
LD50 values for the respective external valida-
tion set (23 compounds). However, for each 
of these models the R2 value for this exter-
nal set was < 0.5. When we used other types 
of in-house or commercial QSAR methods 
(e.g., support vector machine or partial least 
square) and other types of descriptors (e.g., 
MolConnZ descriptors or molecular operating 
environment descriptors), we obtained no sta-
tistically significant predictive QSAR models 
(data not shown). Likewise, modeling of the 
mouse data set (211 modeling compounds 
and 24 external validation compounds) was 
unsuccessful (data not shown). This negative 

result corroborates the well-known inability of 
conventional QSAR modeling approaches to 
arrive at statistically significant and externally 
predictive models of in vivo toxicity.

Data partitioning using the moving 
M-regression approach. It is well known that 
in vitro cytotoxicity correlates poorly with in vivo 
toxicity end points when any relatively large set 
of compounds is considered. The ZEBET data 
set is no exception; cytotoxicity (IC50) correlates 
with acute toxicity (LD50) for only a fraction 
of the compounds in either the rat (Figure 2A) 
or mouse (Figure 2B) data sets. Most of the 
compounds are more toxic in vivo than in vitro. 
Similar patterns could be found between cyto-
toxicity and other in vivo toxicity end points, for 
example, rat chronic LOAEL and rat chronic 
NOAEL (Figures 2C,D).

To devise a mathematical means for iden-
tifying compounds with strong in vitro/in vivo 
correlation, we extended concepts that have 
been previously employed in calculating the 
“baseline regression” that correlated the aquatic 
toxicity of (some) chemicals with the loga-
rithm of the n-octanol/water partition coef-
ficient (log P) (Klopman et al. 1999, 2000; 
Mayer and Reichenberg 2006). Here, we have 
developed a novel approach, termed “moving 
M-regression,” to identify a subset of com-
pounds with strong IC50 versus LD50 correla-
tion. Using this method, we have partitioned 
compounds in the modeling set into two 
classes: class 1, compounds with acute toxicity 
that linearly correlate with cytotoxicity; and 
class 2, compounds with acute toxicity that do 
not correlate well with cytotoxicity, with these 
points positioned above the regression line.

This analysis for the rat ZEBET data set 
resulted in 122 compounds assigned to class 
1, that is, within the linear regression cor-
relation band between LD50 and IC50 val-
ues. The points corresponding to 93 out of 
108 remaining compounds are located above 
the regression line band and are classified as 
class 2, whereas 15 compounds fall below the 
regression line (Figure 2A). Although these 
compounds are likely to be activity outliers, in 
the absence of an objective rationale for their 
outlier status, we merged them into class 1 to 
obtain the highest coverage of the resulting 
models and to provide a more realistic mea-
sure of external predictivity. Figure 2A and 
Equation 10 show the correlation between 
the LD50 and IC50 values of the resulting 137 
class 1 compounds:

	 Log(1/LD50) = –1.1 + 0.4  
		  × log(1/IC50),	 [10]

with R2 = 0.74, SE = 0.36, and n = 137. We 
also applied this approach to analyze the rela-
tionship between the in vitro IC50 and other 
in vivo toxicity data, including mouse LD50, 
rat chronic LOAEL, and rat chronic NOAEL 

Figure 2. The identification of the baseline correlation between cytotoxicity (IC50) and various types of in vivo 
toxicity testing results. (A) Rat LD50. (B) Mouse LD50. (C) Rat LOAEL. (D) Rat NOAEL. C1, class 1; C2, class 2.
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C1 compounds
C2 compounds
Linear fit (C1)

Table 1. The results of data partitioning for the compounds with rat LD50, mouse LD50, rat chronic LOAEL, 
and rat chronic NOAEL data in ZEBET data set using cytotoxicity IC50 values.

Model	 No. of C1 compounds	 C1 ratio (%)	 No. of C2 compounds	 C2 ratio (%)

Rat LD50 (original set)	 137	 60	 93	 40
Mouse LD50	 119	 56	 92	 44
Rat LOAEL	 21	 49	 21	 51
Rat NOAEL	 19	 46	 22	 54
Rat LD50 (full data set)	 258	 61	 167	 39

Abbreviations: C1, Class 1; C2, Class 2. 
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(Table 1). The same trend was found for all 
data sets, that is, in all cases the data were 
partitioned into two classes: a) points on 
the baseline and b) points off the baseline 
(Table 1, Figure 2). We found the ratio of 
class 1 to class 2 compounds to be similar for 
each of the four in vitro/in vivo toxicity data 
sets. This result further supports the generality 
of the “moving M-regression” approach.

Hierarchical QSAR modeling of the parti-
tioned rodent toxicity data. Using class assign-
ments from the data partitioning described 
above, we employed a two-step QSAR 
approach (Figure 1) for a) classification 
modeling (i.e., establishing that compounds 
assigned to classes 1 and 2 based on their 
biological activity data could be subdivided 
into the same classes based on their chemi-
cal structure), and b) predictive continuous 
modeling for all compounds in each class 
(i.e., estimation of the LD50 based on chemi-
cal structure, not IC50 data). For ZEBET rat 
data, we generated three modeling sets: set 1, 
230 compounds (137 class 1 vs. 93 class 2) 
for classification modeling; set 2, 137 class 1 
compounds; and set 3, 93 class 2 compounds 
for developing two continuous rat LD50 
models. The analysis of these three data sets 
resulted in 252 classification models, as well 
as 1,207 continuous LD50 models for class 1 
compounds and 40 continuous LD50 models 
for class 2 compounds that satisfied the sta-
tistical significance threshold criteria. Table 2 
lists the statistical figures of merit for the best 
kNN models obtained for these three model-
ing sets.

To demonstrate that these QSAR mod-
els have significant external prediction accu-
racy, we have employed several concurrent 
approaches for model validation. First, fol-
lowing our general model validation work 
flow (Tropsha and Golbraikh 2007), we 
used 23 compounds excluded randomly 
from the entire data set as an external valida-
tion set. The following two-step prediction 
protocol for external compounds was used: 
a) kNN classification models were used to 
assign compounds to class 1 or class 2; and 
b) depending on the outcome, the respective 
class-specific continuous QSAR models was 
employed to predict the LD50 values for each 
compound. The results demonstrate that the 
overall accuracy of prediction for this exter-
nal set is reasonably good. In the first step, 
the classification model had 65% prediction 
accuracy (the fraction of correctly identified 
class 1 and class 2 compounds). In the second 
step, we obtained R2 = 0.70, mean absolute 
error(MAE) = 0.39, and prediction cover-
age (i.e., the fraction of the external set com-
pounds within the applicability domains of 
the models) of 74% for the external test set 
when combining the predictions for class 1 
and class 2 compounds.

Second, we performed a 5-fold external 
CV analysis to test the robustness of the mod-
eling outcome using 253 rat ZEBET com-
pounds. The dataset was randomly split into 
five equal-size subsets of compounds and the 
modeling procedure was repeated five times, 
using each subset as a test set and the remain-
ing four subsets as training set, as detailed 
in “Materials and Methods.” The statistical 
results of this exercise were as follows: sloperegr 
= 0.45 ± 0.01, R2

regr = 0.71 ± 0.04, R2
ext = 

0.55 ± 0.05, MAE = 0.44 ± 0.04, coverage = 
73 ± 3%. 

Third, we performed Y-randomization tests 
to establish whether our models are statisti-
cally robust. Random partitioning of the com-
pounds into two classes (10 times) produced 
only three (for class 1) and 28 (for class 2) 
models that satisfied the criteria of q2/R2 > 0.5, 
compared with 1,207 and 40, respectively, 
models for “moving M-regression”–assisted 
partitioning. Randomizing LD50 data gener-
ated no model with q2/R2 > 0.5 for class 1 and 
class 2 compounds.

Fourth,  we performed addit ional 
Y-randomization analyses by randomly mov-
ing or rotating the correlation line (including 
negative correlation) and redefining com-
pounds into classes 1 and 2. The randomly 
assigned class 1 and class 2 sets were used 
to develop QSAR LD50 models individually 
and the procedure was repeated 10 times. We 
found that at most, a very small number (< 7) 
of acceptable (Q2 > 0.5, R2 > 0.5) models 
could be developed.

Similar modeling results were obtained 
using the ZEBET mouse LD50 data. After par-
titioning 211 modeling set compounds into 
119 class 1 compounds and 92 class 2 com-
pounds, we developed 843 classification mod-
els for class 1 versus class 2, 236 continuous 

LD50 models for class 1 compounds, and 356 
models for class 2 compounds. A two-step 
prediction protocol for evaluation of the 24 
external compounds resulted in similarly good 
external prediction accuracy: R2 = 0.69, MAE 
= 0.42, and prediction coverage of 54%.

As a true external validation challenge, we 
have used our model to make predictions for 
the 115 compounds with rat LD50 data in the 
new ICCVAM data set. We compiled this 
data set after we finished the development of 
the above-described QSAR LD50 models, so 
it could be viewed as a true “blind” validation 
test. The statistical parameters of the predic-
tion results for these compounds were R2 = 
0.57, MAE = 0.48, and prediction coverage of 
70%. Although somewhat less accurate than 
the results of the previous external prediction, 
this validation reinforces the statistical signifi-
cance and utility of the model. 

Y-randomization tests were also performed 
for the mouse LD50 data set. Similar to the 
rat data, after 10 random assignments of com-
pounds into the two classes, we developed, 
at most, 4 (for class 1) and 38 (for class 2) 
models (q2/R2 > 0.5), compared with 843 
and 236 models, respectively, when we used a 
classification model. Randomization of LD50 
values produced no significant models.

Stability of the in vitro and in vivo moving 
M-regression parameters. Because the regres-
sion correlation between in vitro (IC50) and 
in vivo (LD50) data is required to classify the 
modeling set compounds and, subsequently, 
to create the kNN classification models, this 
linear correlation is an essential factor to 
determine the robustness of our final mod-
els. Hence, the slope of the correlation and 
associated correlation coefficient (R2) should 
remain stable when new compounds are 
added into the modeling set. To validate this 

Table 2. Statistical information for the five most statistically significant kNN QSAR models based on three 
modeling sets.

Model	 N-training	 Pred-training	 N-test	 Pred-test	 NNN

The best kNN classification model for 137 class 1 versus 93 class 2 compounds
  1	 173	 0.84	 55	 0.73	 1
  2	 147	 0.86	 74	 0.70	 1
  3	 193	 0.83	 37	 0.73	 1
  4	 165	 0.86	 59	 0.70	 1
  5	 173	 0.81	 55	 0.75	 1
The best kNN continuous model for 137 class 1 compounds
  1	 103	 0.66	 34	 0.81	 3
  2	 103	 0.73	 34	 0.71	 2
  3	 111	 0.71	 26	 0.74	 3
  4	 115	 0.65	 22	 0.79	 5
  5	 77	 0.73	 60	 0.71	 2
The best kNN continuous model for 93 class 2 compounds
  1	 80	 0.61	 13	 0.84	 2
  2	 77	 0.67	 16	 0.77	 1
  3	 80	 0.69	 13	 0.74	 1
  4	 80	 0.65	 13	 0.76	 2
  5	 79	 0.63	 14	 0.78	 2

Abbreviations: NNN; number of the nearest neighbors used for prediction; N-test, number of compounds in the test set; 
N-training, number of compounds in the training set; Pred-test, the overall predictivity of the test set (correct classifica-
tion rate for classification models, R2 for continuous models); Pred-training, the overall predictivity of the training set (cor-
rect classification rate for classification models, q2 for continuous models).
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supposition, we compiled all available ZEBET 
and ICCVAM compounds with rat LD50 
data to create a new modeling set, including 
the original modeling set (230 compounds), 
the external validation set (23 compounds), 
and additional data (115 compounds). We 
also included the compounds previously not 
used for modeling (inorganic, organometallic, 
and mixtures) because we used no chemi-
cal descriptors in this validation. Using the 
moving M-regression approach for all 425 
compounds with IC50 and LD50 values, the 
resulting in vitro/in vivo correlation param-
eters are similar to those obtained from our 
original modeling set in Equation10:

	 Log(1/LD50) = –1.1 + 0.36  
		  × log(1/IC50), 	 [11]

with R2 = 0.71, SE = 0.37, and n = 258. The 
proportions of class 1 and class 2 compounds 
and outliers among these 425 compounds 
were also comparable to those of the original 
modeling set of 230 compounds (Table 1). 
We conclude that adding new compounds 
into the modeling set, which should be impor-
tant to improve the final model by enriching 
its chemical and biological diversity, does not 
affect the in vitro/in vivo regression statistics.

Comparison between the two-step hierar-
chical LD50 QSAR model and TOPKAT. We 
compared the performance of our modeling 
approach with that of TOPKAT software, ver-
sion 6.1 (Accelrys 2009; Enslein 1988). Two 
types of comparison were considered. First, 
we have analyzed 27 of the 115 ICCVAM 
compounds that have been used neither for 
building our model nor in the TOPKAT 

LD50 training set. Figure 3 shows the correla-
tion between the experimental and predicted 
LD50 values obtained from our model versus 
TOPKAT. The R2 and MAE of TOPKAT 
were 0.16 and 0.78, respectively, for all 
27 compounds, which is considerably less than 
the same statistical parameters for prediction 
of the same data set using our model, R2 and 
MAE of 0.64 and 0.38, respectively. For seven 
compounds that were outside of the applicabil-
ity domain for our model, the R2 and MAE 
using TOPKAT were 0.60 and 0.50, respec-
tively, whereas our model produced values of 
0.86 and 0.29, respectively (Table 3).

Second, we have used our models to pre-
dict acute toxicity compounds in the RTECS 
(Norager et al. 1978) data set (data were kindly 
provided by Todd Martin from the U.S. 
EPA), which contains approximately 7,000 
compounds with rat LD50 data. We removed 
compounds that we found within the ZEBET 
data set, as well as inorganic compounds and 
mixtures. This procedure produced a library of 
4,003 compounds spanning a diverse chemical 
space of organic molecules for which experi-
mental rat LD50 data are available.

Because the size of the RTECS library is 
much larger than that of our original model-
ing set, we drew from our experience in using 
QSAR models for virtual screening (Oloff 
et al. 2005) and narrowed the model applica-
bility domain. Consequently, predictions were 
made only for compounds that had greater 
than 70% confidence level in assigning them 
to either class 1 or class 2 in step 1 of our 
work flow (i.e., we required that > 70% of 
all QSAR models meeting our acceptability 
domain criteria would predict a compound 
in the same class). We determined that there 
were 1,562 compounds (out of 4,003) that 
were not included in the training set of 
TOPKAT rat LD50 model and for which pre-
dictions could be made based on the afore-
mentioned criteria. The TOPKAT model 
predicted LD50 values for these compounds 
with an R2 = 0.16 and MAE = 0.78 (Figure 
4, Table 3). The same parameters for the two-
step QSAR model were 0.26 and 0.65, respec-
tively. After implementing the applicability 

domain filter, we made predictions for 965 
RTECS chemicals. TOPKAT model had 
parameters of R2 = 0.22 and MAE = 0.65; the 
same parameters for the two-step model were 
0.33 and 0.54, respectively (Table 3), which is 
better than or comparable to prediction accu-
racy of various commercial QSAR modeling 
packages (Moore et al. 2003), albeit there is 
room for improvement.

It should be noted that the predic-
tion accuracy of the two-step model can be 
improved by applying stricter criteria in the 
classification step. For instance, a 90% cutoff 
for correct class prediction results in prediction 
model statistics of R2 = 0.62 and MAE = 0.42, 
but the coverage of the model diminishes con-
siderably to include 101 compounds (Table 3). 
The performance of TOPKAT for the same 
101 compounds is poor: R2 = 0.26 and MAE 
= 0.66. Considering that the TOPKAT 
LD50 training set contains many more com-
pounds (~ 6,000) than the training set used 
to develop the two-step model (~ 200), it is 
noteworthy that higher prediction accuracy 
can be achieved using our modeling approach 
for a much larger data set. Furthermore, our 
approach outperforms TOPKAT consistently 
over a range of error thresholds either for 
965 RTECS compounds or for 101 RTECS 
compounds (Figure 4). In addition, we used 
the Wilcoxon test to calculate the p-values for 
the differences in MAEs obtained using two 
methods. Both for the whole set (965 com-
pounds) and for the reduced set (101 com-
pounds), the improvement achieved by our 
method, compared with TOPKAT, is statisti-
cally significant (p < 0.005).

One obvious reason that the prediction 
accuracy of our models for RTECS com-
pounds is lower than that obtained from the 
external validation set of ICCVAM data is the 
difference in “activity” ranges of compounds 
in these two data sets. For example, the activ-
ity (log 1/activity, in millimolar units) of 
ZEBET compounds ranges from –2.61 to 
2.30, whereas the activity range of RTECS 
compounds is considerably larger, from –3.34 
to 4.21. It should be stressed that the kNN 
method used in our study cannot extrapolate 

Figure 3. The correlation between experimental 
and predicted LD50 values for 27 external com-
pounds within the applicability domain (A) using 
TOPKAT and (B) using the two-step model devel-
oped in this study.
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Table 3. Comparison between TOPKAT and the two-step model prediction of the external compounds.

	 Two-step model	 TOPKAT
Measure	 No applicability domain	 With applicability domain	 No applicability domain	 With applicability domain

Prediction of 27 new ZEBET compounds
  R2	 0.64	 0.86	 0.16	 0.60
  MAE	 0.38	 0.29	 0.78	 0.50
  Coverage (%)	 100	 67	 100	 67
Prediction of 1,562 RTECS compounds with 70% confidence level
  R2	 0.26	 0.33	 0.19	 0.22
  MAE	 0.65	 0.54	 0.76	 0.65
  Coverage (%)	 100	 62	 100	 62
Prediction of 1,562 RTECS compounds with 90% confidence level
  R2	 0.42	 0.62	 0.19	 0.26
  MAE	 0.60	 0.42	 0.84	 0.66
  Coverage (%)	 12	 6	 12	 6
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in the activity space because external com-
pound activity is predicted by averaging the 
activities of nearest-neighbor compounds in 
the training set as described in “Materials and 
Methods.” The MAE for the prediction of 
RTECS compounds that have experimen-
tal activity above 2 or below –2 is 1.14 log 
units. On the other hand, the MAE for the 
prediction for RTECS compounds that have 
experimental activity between –2 and 2 is 
considerably lower, 0.52 log units. The likely 
explanation for the better performance of our 
models in the latter range is that more than 
90% of our modeling set compounds have 
rat LD50 activity in the same range, between 
–2 and 2. Increasing the diversity and activ-
ity range of compounds in the modeling set 
should significantly improve the prediction 
accuracy of our models.

Discussion
The conventional wisdom in mechanistic and 
regulatory toxicology is that predictions of the 
in vivo toxicity end points from in vitro meas
ures, even within the same species, are difficult. 
However, an approximate linear correlation 
between in vitro IC50 and rodent LD50, two of 
the widely acceptable benchmark parameters 
used for regulatory purposes, can be established 
for a significant fraction of the compounds. 
Indeed, we confirmed this notion by quantita-
tive analysis of the IC50/LD50 relationships and 
devised an objective, computational means to 
partition compounds into two groups: those 
having good linear fit within a defined band, or 
those falling outside the band and exhibiting, for 
the most part, higher in vivo than in vitro toxic-
ity. Our hypothesis to explain this observation is 
that, whereas cytotoxicity assays can reflect some 
of the toxicity mechanisms resulting in adverse 
health effects at the whole-animal level, the 
in vitro tests cannot fully reproduce the complex 
mechanisms of the in vivo toxicity. For example, 
it is well known that many compounds are not 
toxicants themselves but have metabolites that 
are toxic. We argue that the two-step predic-
tion model based on chemical descriptors only 

that we developed in our studies also assists 
in identification of the compound subset that 
may act directly (i.e., without being biotrans-
formed) and through mechanisms likely to 
be predictive of the potential in vivo effects. A 
similar argument was presented previously in 
ecotoxicity research where log P was found to 
be a mechanistically relevant predictor (Verhaar 
et al. 2000).

To further substantiate this argument, 
we considered the top 10 chemical fragment 
descriptors that were used most frequently in 
statistically significant QSAR models, that is, 
descriptors with the highest discriminatory 
power [see Supplemental Material, Table 3 
(doi:10.1289/ehp.0800471.S1)]. It is note-
worthy that the aromatic primary amine, 
“hydrazine,” and “sulfonamide” moieties, 
found within compounds that are known to 
be toxic both in vitro and in vivo (Alaejos 
et al. 2008; Carr et al. 1993; Toth 1988), 
were found predominantly in compounds 
of class 1. On the other hand, “pyrrolidine” 
and “aromatic tertiary amine” moieties, 
which require biotransformation (Domagala 
1994), were predictors for class 2. We have 
also demonstrated that this objective divi-
sion of the data set into two major groups 
affords robust hierarchical QSAR models, an 
assertion further supported by successive chal-
lenges to the models with external data sets, 
CV, and randomization of data.

The approach advocated in this study for 
biologically informed partitioning of structure–
activity relationship data differs from conven-
tional cheminformatics clustering approaches. 
Traditional methods partition compounds into 
multiple subgroups based on their chemical 
structure properties only (i.e., chemical descrip-
tors). The underlying reasoning for chemically 
based clustering is that similar structures are 
expected to have similar biological properties 
and mechanisms of activity. However, it is a 
well-known limitation of structure–activity 
relationships that the absence or presence of a 
functional group or other minor change of the 
chemical structure may result in a large change 
of biological activity (Maggiora 2006). In our 
studies, the conventional chemical structure–
based clustering method did not yield any sta-
tistically meaningful models, either global or 
local. The distribution of pairwise chemical 
similarities for all compounds within the mod-
eling sets (class 1 vs. class 2) of rat LD50 values 
using DRAGON descriptors is very similar 
(data not shown). This observation reconfirms 
that chemical clustering would not have par-
titioned compounds in a way similar to the 
biological data-based partitioning.

Conclusions
Although the cytotoxicity data generally show 
weak correlation with rodent acute toxicity, 
we have demonstrated that these data can be 

used to inform and improve QSAR model-
ing of in vivo acute toxicity. We have devel-
oped a novel two-step kNN QSAR modeling 
approach that affords a successful prediction 
of acute toxicity (LD50) values from chemical 
structure for both rats and mice. Furthermore, 
we predicted LD50 values for external com-
pounds with accuracy, exceeding that of previ-
ously published QSAR models developed with 
the commercial (TOPKAT) software. It should 
be stressed that although in vitro cytotoxic-
ity data have been used to establish the rules 
for partitioning most compounds into two 
classes, the ultimate models, both classification 
and continuous, employ chemical descriptors 
only. This vital feature of our approach makes 
it possible to achieve accurate predictions of 
rodent acute toxicity directly from chemical 
structure alone, even bypassing the need for 
in vitro studies of new compounds. We believe 
that this biological-data–based partitioning 
approach using in vitro toxicity data for the 
modeling set only, coupled with subsequent 
chemical-structure–based classification and 
continuous QSAR modeling techniques, holds 
promise for modeling other complex in vivo 
toxicity end points. This approach charts a 
future course for combining in vitro screening 
methods and QSAR modeling to prioritize 
chemicals for in vivo animal toxicity testing.
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